AS

Mathematics

MPC2 Pure Core 2
Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

```
Key to mark scheme abbreviations
M mark is for method
m or dM
A
B
E
vorft or F
CAO
CSO
AWFW
AWRT
ACF
AG
SC
OE
A2,1
-x EE
NMS
PI
SCA
C
sf
dp
```


Key to mark scheme abbreviations

```
\begin{tabular}{|c|c|}
\hline M & mark is for method \\
\hline m or dM & mark is dependent on one or more M marks and is for method \\
\hline A & mark is dependent on M or m marks and is for accuracy \\
\hline B & mark is independent of \(M\) or \(m\) marks and is for method and accuracy \\
\hline E & mark is for explanation \\
\hline \(\checkmark\) orft or F & follow through from previous incorrect result \\
\hline CAO & correct answer only \\
\hline CSO & correct solution only \\
\hline AWFW & anything which falls within \\
\hline AWRT & anything which rounds to \\
\hline ACF & any correct form \\
\hline AG & answer given \\
\hline SC & special case \\
\hline OE & or equivalent \\
\hline A2,1 & 2 or 1 (or 0) accuracy marks \\
\hline -x EE & deduct \(x\) marks for each error \\
\hline NMS & no method shown \\
\hline PI & possibly implied \\
\hline SCA & substantially correct approach \\
\hline c & candidate \\
\hline sf & significant figure(s) \\
\hline dp & decimal place(s) \\
\hline
\end{tabular}
```


No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	Perimeter of sector $=8+8+8 \theta$	M1		$r+r+r \theta$ used for the perimeter PI by eg $8 \theta=22-16 \quad$ OE
	$\theta=0.75$	A1	2	A correct value for θ. eg $6 / 8$ NMS scores $2 / 2$
(b)	$\text { (Area of sector) }=\frac{1}{2} r^{2} \theta=\frac{1}{2}\left(8^{2}\right) \theta$	M1	2	$\frac{1}{2} r^{2} \theta$ seen, or used, for the sector area OE eg $\frac{1}{2} r L$ with $L=r \theta$
	Total		4	
	Condone absent or incorrect units in this question			

(c) $k=13$ with sufficient evidence eg $\frac{u_{13}}{1-r}=\frac{0.83239 . .}{1 / 3}=2.497 \ldots<2.5$ can score $3 / 3$

Q5	Solution	Mark	Total	Comment
(a)	For st pt, $x^{\frac{3}{2}}-2 x=0$ $\left(\Rightarrow x^{\frac{3}{2}}=2 x\right)$	M1		$x^{\frac{3}{2}}-2 x=0$
	(Since $x>0) \Rightarrow x^{\frac{1}{2}}=2 \Rightarrow x=4$	A1	2	$x=4$ as the only value of x. [Give BOD if $x^{3}-4 x^{2}=0$ appears after $x^{\frac{3}{2}}-2 x=0$ in working]
(b)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{3}{2} x^{\frac{1}{2}}-2$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Differentiating one term correctly. ACF
	When $x=4, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=1>0$ so curve has a minimum point	A1	3	AG Must be using 'hence'. Be convinced. eg shows that the value of the second derivative is 1 at $x=4$, states $1>0$ (or states $\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0\right)$ so min.
(c)	$\begin{aligned} & \int\left(x^{1.5}-2 x\right) \mathrm{d} x=\frac{x^{2.5}}{2.5}-\frac{2 x^{2}}{2}(+c) \\ & (y=) \frac{2}{5} x^{2.5}-x^{2}(+c) \end{aligned}$	M1 A1		Attempt to integrate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with at least one of the two terms integrated correctly. $\frac{2}{5} x^{2.5}-x^{2}$ OE ; condone unsimplified
	$\begin{aligned} & \text { When } x=4, y=2 \\ & \Rightarrow 2=\frac{2}{5}(4)^{2.5}-4^{2}+c \\ & y=\frac{2}{5} x^{2.5}-x^{2}+\frac{26}{5} \end{aligned}$	dM1 A1	4	Subst. $x=4$ or c's positive x value from part (a), and $y=2$ into $y=\mathrm{F}(x)+{ }^{6} c$ ' in an attempt to find the constant of integration ACF of the equation with signs and coefficients simplified
	Total		9	

two values. Condone 'between' -1 and 1. Examples ' Math error', 'impossible' ,'can't be negative' E0

Altn: for the two B marks using the difference of two cubes ie $X^{3}-Y^{3}=(X-Y)\left(X^{2}+X Y+Y^{2}\right)$

$$
\begin{aligned}
(c+2)^{3}-c^{3} & =(c+2-c)\left\{(c+2)^{2}+(c+2) c+c^{2}\right\} \quad \text { B1 (PI by next line) } \\
& =2\left(c^{2}+4 c+4+c^{2}+2 c+c^{2}\right) \quad \text { OE B1 }
\end{aligned}
$$

$\left(^{*}\right) \log (\mathrm{f}(c, k))=\log 2$, crossing out both ' \log ' to get $(\mathrm{f}(c, k))=2$ we will condone
(*) $\log (\mathrm{f}(c, k))=\log 2, \frac{\log (\mathrm{f}(c, k))}{\log 2}=1, \frac{(\mathrm{f}(c, k))}{2}=1$ to get $(\mathrm{f}(c, k))=2$ will result in FIW A0 A0

